
Run PowerShell Scripts through a Server
Event

Scenario
You want to use a K2 blackpearl workflow to issue PowerShell commands through a script which accepts

a parameter and outputs a value.

Requirements
 Visual Studio

 K2 for Visual Studio

 Familiarity with the K2 Workspace

 Full access to a folder on the hard drive of the K2 host server (both for the account you’re using

as the developer AND for the account K2 uses to run your workflow).

 Alternate credentials under which you want the server event to execute (optional; this account

must have access to the aforementioned folder on the K2 host server)

 LDAP over SSL (LDAPS) in the development and production environments

 Access to the instance of SQL Server running the K2 Server (if refreshing the User Manager

Cache is required)

References
(a) How to enable LDAP over SSL with a third-party certification authority

(b) Refresh the User Manager Cache

Special Note to Users of K2 Studio

If you’ve been using K2 Studio for all of your K2 blackpearl development, you’ll need to install a copy of

Visual Studio, then install K2 for Visual Studio afterwards. K2 Studio does not have the capability to

write the server event code you’ll require.

Be sure to install a copy of Visual Studio supported by the version of K2 you’re running. For example,

versions of K2 blackpearl prior to 4.6.3 (4.12060.1530.0) will not support Visual Studio 2010.

Furthermore, if you intend to continue reliance on K2 Studio as your IDE, consider installing Visual

Studio and K2 for Visual Studio on a separate workstation if you can.

http://support.microsoft.com/kb/321051
http://help.k2.com/en/K2blackpearlGettingStarted4.6.5.aspx?page=active_directory_user_manager.html

Overview
You’re going to use several technologies to achieve your objective. In the broad strokes, you’ll use K2

blackpearl to create a Server Event, and use C# to create a PowerShell Runspace in which a Powershell

script, located on the server, will be invoked. Data will flow from a datafield in the workflow into the

script, and results will be returned to a datafield in the workflow.

To get started, load your workflow solution in Visual Studio, and locate or create the activity in which

you want the PowerShell script executed.

Steps

1. Create the Server Event
Drag the Default Server Event (Code) wizard into the target activity from the toolbox.

LDAP over SSL

If an exception is thrown when you drag the Server Event to the canvas, it’s possible the cause may be

that LDAP over SSL is not configured for your environment. In Windows Server 2008, LDAPS is not

configured by default. K2 notes that “a configuration issue may occur due to the missing LDAPS support

as the environment will not have a certification authority (CA) installed and also will not have the

appropriate server authentication certificate configured.” See the link provided in reference (a) for

additional information.

Run with Alternate Credentials

Server Events may be executed using arbitrary account credentials. This is particularly useful if you’re

having scripts run to perform actions requiring elevated account privileges. To modify the account

credentials to be used, right-click on the Server Event and select Properties. On the General Properties

pane, you’ll see Run As: , followed by an account name and a Change button.

 Click the Change button to bring up the Configure Credentials dialog. You may leave the account set to

the K2 Server service account, or supply a specific user name and password.

If you’re creating a new account for use here, K2 has to “know about” the new account. I believe K2

imports from Active Directory at 12-hour intervals, but an import may be forced by refreshing the K2

User Manager Cache. See reference (b) for details.

2. Create and Store the PowerShell Script
In a location on the server which hosts K2, open Notepad and type the following into a text document:

param([double] $fahrenheit)

##convert it to Celsius

$celsius= $fahrenheit - 32

$celsius = $celsius / 1.8

##output the answer

"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

Save this file as Convert-Temperature.ps1. Carefully note the path you used for storing the file.

3. Code the Server Event
Okay. Time for some fun stuff.

Right-Click on the Server Event and select View Code  Event Item to get into some code. Here’s an

example of what you’ll see by default:

The system generated all of this – including all of that hex. Don’t worry about copying it. Your focus is

that Main() subroutine. It’s going to contain the C# code necessary to create a runspace for your

PowerShell script.

Add a Reference to PowerShell

The first thing you’re going to need here is a reference to PowerShell.

Navigate back to your main project tab. Right-click anyplace on the canvas to bring up your workflow’s

general properties. Down the left side of the wizard, you should see several icons – I have eight of them,

the last of them is shaded purple. Click the second-to-last icon to bring up the Process References pane.

Click Add to bring up the Add References dialog. You want to add a reference to

System.Management.Automation.dll.

Create Input and Output Datafields

Before you get back into the code, let’s visit the K2 Object Browser and create a datafield of type

Integer called CurrentTemp. Set the default value to 32. We’re going to have our code read this value.

Next, create another datafield of type String called _ServerEvent-ConvertTemperature. We’re

going to have our code write to this variable, to allow us to monitor our code from the K2 Workspace.

Lay Some Code

Now go back into your server event and add:

using System.Management.Automation.Runspaces;

to reference the PowerShell DLL, and add the following code to Main():

/* var to hold the output variable name */
const string outputVariable = "_ServerEvent-ConvertTemperature";

Now let’s add a pair of constants to use for the path and name of that PowerShell script:

/* constants containing the location of the scripts and the name of the specific script*/
const string scriptpath = @"C:\PSScripts\";
const string file = "Convert-Temperature.ps1";

Time for our argument. In this case, we’re passing in an integer for the value of the temperature in

Fahrenheit.

/* arguments */
int fahrenheit;

We could set a value here from within the script (e.g., int Fahrenheit = 32;), but the exercise would
probably be more useful to us if we used a value from one of the workflow datafields, like this:

int fahrenheit = (int) K2.ProcessInstance.DataFields["CurrentTemperature"].Value;

Eventually, you’ll need a separator for your multiple arguments. Since PowerShell uses space to delimit

these, let’s create a constant for this.

Let’s also create a string to hold our PowerShell command.

/* arguments separator */
const string separator = " ";

/* string containing the PowerShell command */
string cmd = "& ";

The ampersand tells PowerShell to execute the command that follows.

Let’s assemble the cmd var to give it the script path and name.

/* add the script path */
cmd += String.Concat(scriptpath, file, separator);

Now let’s append our argument.

/* add any arguments (separated by separator) */
cmd += String.Concat(fahrenheit);

If you had multiple arguments, you’d simply add them like this:

cmd += String.Concat(arg1, separator, arg2, separator, arg3, separator, arg4);

The PowerShell Runspace

Now you need some runspace goop. This is the code you’ll need to create the actual PowerShell

runspace.

/* runspace goop */
Runspace runspace = null;
Pipeline pipeline = null;

try
{
 runspace = RunspaceFactory.CreateRunspace();
 runspace.Open();
 pipeline = runspace.CreatePipeline();
 pipeline.Commands.AddScript(cmd);
 var results = pipeline.Invoke();

 foreach (var obj in results)
 {
 //consume the results
 K2.ProcessInstance.DataFields[outputVariable].Value = obj.ToString();
 }
}

catch (Exception ex)
{
 K2.ProcessInstance.DataFields[outputVariable].Value = ex.ToString();
 throw;
}

finally
{
 if (pipeline != null) pipeline.Dispose();
 if (runspace != null) runspace.Dispose();
}

The code creates Runspace and Pipeline objects, and your cmd var is passed to the pipeline instance. An

output variable called results receives the output from the pipeline – or, more directly, the output of

your Convert-Temperature function. We have a value for outputVariable which is the name of a

datafield, which is where the results value – or, if something’s gone south, any exceptions – will go.

Finally, we dispose of the Runspace and Pipleline instances.

The content of the Main() function follows. (Don’t forget to add the reference to the runspaces

namespace!):

 {
 /* var to hold the output variable name */
 const string outputVariable = "_ServerEvent-ConvertTemperature";

 /* constants containing the location and name of the script*/
 const string scriptpath = @"C:\PSScripts\";
 const string file = "Convert-Temperature.ps1";

 /* arguments */
 int fahrenheit = (int) K2.ProcessInstance.DataFields["CurrentTemperature"].Value;

 /* arguments separator */
 const string separator = " ";

 /* string containing the PowerShell command */
 string cmd = "& ";

 /* add the script path */
 cmd += String.Concat(scriptpath, file, separator);

 /* add any arguments (separated by separator) */
 cmd += String.Concat(fahrenheit);

 /* runspace goop */
 Runspace runspace = null;
 Pipeline pipeline = null;

 try
 {
 runspace = RunspaceFactory.CreateRunspace();
 runspace.Open();
 pipeline = runspace.CreatePipeline();
 pipeline.Commands.AddScript(cmd);
 var results = pipeline.Invoke();

 foreach (var obj in results)
 {
 //consume the results

 K2.ProcessInstance.DataFields[outputVariable].Value = obj.ToString();
 }
 }
 catch (Exception ex)
 {
 K2.ProcessInstance.DataFields[outputVariable].Value = ex.ToString();
 throw;
 }

 finally
 {
 if (pipeline != null) pipeline.Dispose();
 if (runspace != null) runspace.Dispose();
 }
 } //public void Main…
 } //public partial class EventItem…
} //using hostcontext…

(I added the comments above to help clarify what brace was for what.)

4. Build and Deploy
If you’ve created a new activity to house the Server Event, make sure it’s connected to the rest of your

workflow. Save, compile, and deploy to your development environment.

Run your workflow, then consult the Process Instance Data in your Workspace.

Here’s the output I received.

